A New Threshold Based Penalty Function Embedded MOEA/D
نویسندگان
چکیده
Recently, we proposed a new threshold based penalty function. The threshold dynamically controls the penalty to infeasible solutions. This paper implants the two different forms of the proposed penalty function in the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to solve constrained multiobjective optimization problems. This led to a new algorithm, denoted by CMOEA/D-DE-ATP. The performance of CMOEA/D-DE-ATP is tested on hard CFseries test instances in terms of the values of IGD-metric and SC-metric. The experimental results are compared with the three best performers of CEC 2009 MOEA competition. Experimental results show that the proposed penalty function is very promising, and it works well in the MOEA/D framework. Keywords—Constrained multiobjective optimization; decomposition; MOEA/D; penalty function; threshold.
منابع مشابه
Threshold Based Penalty Functions for Constrained Multiobjective Optimization
This paper compares the performance of our recently proposed threshold based penalty function against its dynamic and adaptive variants. These penalty functions are incorporated in the update and replacement scheme of the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to solve constrained multiobjective optimization problems (CMOPs). As a result, the capability ...
متن کاملPerformance of a Constrained Version of MOEA/D on CTP-series Test Instances
Constrained multiobjective optimization arises in many real-life applications, and is therefore gaining a constantly growing attention of the researchers. Constraint handling techniques differ in the way infeasible solutions are evolved in the evolutionary process along with their feasible counterparts. Our recently proposed threshold based penalty function gives a chance of evolution to infeas...
متن کاملA Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems
In recent studies on evolutionary multiobjective optimization, MOEA/D has been frequently used due to its simplicity, high computational efficiency, and high search ability. A multiobjective problem in MOEA/D is decomposed into a number of single-objective problems, which are defined by a single scalarizing function with evenly specified weight vectors. The number of the single-objective proble...
متن کاملAn Adaptive Penalty Scheme for Multiobjective Evolutionary Algorithm Based on Decomposition
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem into a number of sing-objective subproblems and solves them collaboratively. Since its introduction, MOEA/D has gained increasing research interest and has become a benchmark for validating new designed algorithms. Despite that, some recent studies have revealed that MOEA/D...
متن کاملDynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm
The intermittency of wind power and the large-scale integration of electric vehicles (EVs) bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED) model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016